Scientists Study Inner Ear to Determine Beginnings of Mammals

2022-08-01

00:00 / 00:00
复读宝 RABC v8.0beta 复读机按钮使用说明
播放/暂停
停止
播放时:倒退3秒/复读时:回退AB段
播放时:快进3秒/复读时:前进AB段
拖动:改变速度/点击:恢复正常速度1.0
拖动改变复读暂停时间
点击:复读最近5秒/拖动:改变复读次数
设置A点
设置B点
取消复读并清除AB点
播放一行
停止播放
后退一行
前进一行
复读一行
复读多行
变速复读一行
变速复读多行
LRC
TXT
大字
小字
滚动
全页
1
  • Mammals can produce their own body heat and control their body temperatures.
  • 2
  • This process is known as endothermy or warm-bloodedness.
  • 3
  • Scientists believe that it may be the reason why mammals likely rule almost every ecosystem.
  • 4
  • Warm-blooded mammals are more active than cold-blooded animals.
  • 5
  • They can live in different environments, from the frozen arctic to the boiling desert.
  • 6
  • And they reproduce faster.
  • 7
  • The soft tissues that would give information about warm- or cold-bloodedness are rarely preserved in fossils.
  • 8
  • So, paleontologists, or experts in the study of fossils, do not know exactly when mammals developed and changed into warm-blooded creatures.
  • 9
  • A group of scientists tried to answer that question in a study recently published in Nature.
  • 10
  • Ricardo Araújo is a paleontologist at the University of Lisbon.
  • 11
  • Araújo and a group of researchers proposed that the shape and size of the inner ear structures called canals could be used to study body temperature.
  • 12
  • The movement of fluid through the ear canals helps the body to preserve balance and movement.
  • 13
  • This fluid in cold-blooded animals is cooler and thicker, meaning wider canals are needed.
  • 14
  • Warm-blooded animals have less ear fluid and smaller canals.
  • 15
  • The research team suggested that as body temperature increased and the animals became more active,
  • 16
  • the shape and size of ear canals changed to preserve balance and movement.
  • 17
  • The researchers compared ear canals in 341 animals.
  • 18
  • They said the ear canals showed that warm-bloodedness, or endothermy, appeared around 233 million years ago, millions of years later than some previous estimates.
  • 19
  • Araújo said, "Endothermy is a defining feature of mammals, including us humans.
  • 20
  • Having a ... high body temperature regulates all our actions and behaviors."
  • 21
  • But the first creatures that showed warm-bloodedness are not officially considered to be mammals.
  • 22
  • These ancient animals known as mammaliamorph synapsids had traits linked with mammals.
  • 23
  • The first true mammals, the researchers said, appeared roughly 30 million years later.
  • 24
  • Ken Angielczyk of the Field Museum in Chicago is a co-leader of the study.
  • 25
  • He said, "Given how central endothermy is to so many aspects of the body plan, physiology and lifestyle of modern mammals, when it evolved in our ancient ancestors has been a really important unsolved question..."
  • 26
  • Endothermy evolved at a time when important elements of the mammal body plan were falling into place, including changes to the backbone, breathing system, and hearing system.
  • 27
  • Having warm-bloodedness also helped mammals at an important evolutionary moment when dinosaurs and flying reptiles first appeared on Earth.
  • 28
  • And mammals took over after the dinosaur mass extinction event 66 million years ago.
  • 29
  • Among today's animals, mammals and birds are warm-blooded.
  • 30
  • "It is maybe too far-fetched, but interesting, to think that the onset of endothermy in our ancestors may have ultimately led to the construction of the Giza pyramids or the development of the smartphone," Araújo said.
  • 31
  • "If our ancestors would have not become independent of environmental temperatures, these human achievements would probably not be possible."
  • 32
  • I'm John Russell.
  • 1
  • Mammals can produce their own body heat and control their body temperatures. This process is known as endothermy or warm-bloodedness.
  • 2
  • Scientists believe that it may be the reason why mammals likely rule almost every ecosystem. Warm-blooded mammals are more active than cold-blooded animals. They can live in different environments, from the frozen arctic to the boiling desert. And they reproduce faster.
  • 3
  • The soft tissues that would give information about warm- or cold-bloodedness are rarely preserved in fossils. So, paleontologists, or experts in the study of fossils, do not know exactly when mammals developed and changed into warm-blooded creatures.
  • 4
  • A group of scientists tried to answer that question in a study recently published in Nature.
  • 5
  • Ricardo Araújo is a paleontologist at the University of Lisbon. Araújo and a group of researchers proposed that the shape and size of the inner ear structures called canals could be used to study body temperature.
  • 6
  • The movement of fluid through the ear canals helps the body to preserve balance and movement. This fluid in cold-blooded animals is cooler and thicker, meaning wider canals are needed. Warm-blooded animals have less ear fluid and smaller canals.
  • 7
  • The research team suggested that as body temperature increased and the animals became more active, the shape and size of ear canals changed to preserve balance and movement.
  • 8
  • The researchers compared ear canals in 341 animals. They said the ear canals showed that warm-bloodedness, or endothermy, appeared around 233 million years ago, millions of years later than some previous estimates.
  • 9
  • Araújo said, "Endothermy is a defining feature of mammals, including us humans. Having a ... high body temperature regulates all our actions and behaviors."
  • 10
  • But the first creatures that showed warm-bloodedness are not officially considered to be mammals. These ancient animals known as mammaliamorph synapsids had traits linked with mammals. The first true mammals, the researchers said, appeared roughly 30 million years later.
  • 11
  • Importance of being warm-blooded
  • 12
  • Ken Angielczyk of the Field Museum in Chicago is a co-leader of the study. He said, "Given how central endothermy is to so many aspects of the body plan, physiology and lifestyle of modern mammals, when it evolved in our ancient ancestors has been a really important unsolved question..."
  • 13
  • Endothermy evolved at a time when important elements of the mammal body plan were falling into place, including changes to the backbone, breathing system, and hearing system.
  • 14
  • Having warm-bloodedness also helped mammals at an important evolutionary moment when dinosaurs and flying reptiles first appeared on Earth. And mammals took over after the dinosaur mass extinction event 66 million years ago. Among today's animals, mammals and birds are warm-blooded.
  • 15
  • "It is maybe too far-fetched, but interesting, to think that the onset of endothermy in our ancestors may have ultimately led to the construction of the Giza pyramids or the development of the smartphone," Araújo said.
  • 16
  • "If our ancestors would have not become independent of environmental temperatures, these human achievements would probably not be possible."
  • 17
  • I'm John Russell.
  • 18
  • John Russell adapted this story for VOA Learning English based on Nature, Scientific American and Reuters news reports.
  • 19
  • ________________________________________________________________________
  • 20
  • Words in This Story
  • 21
  • ecosystem - n. everything that exists in a particular environment
  • 22
  • preserve - v. to keep (something) in its original state or in good condition
  • 23
  • fossil - n. something (such as a leaf, skeleton, or footprint) that is from a plant or animal which lived in ancient times and that you can see in some rocks
  • 24
  • feature - n. an interesting or important part, quality, ability, etc.
  • 25
  • regulate - v. to set or adjust the amount, degree, or rate of (something)
  • 26
  • trait - n. a quality that makes one person or thing different from another
  • 27
  • aspect - n. a part of something
  • 28
  • evolve - v. to change or develop slowly often into a better, more complex, or more advanced state : to develop by a process of evolution
  • 29
  • far-fetched - adj. not likely to happen or be true